TECHNICAL UNIVERSITY OF	Additional Testing Report	TESTING LABORATORY FOR THERMAL,
CONSTRUCTION ENGINEERING	No. 00260/2111	HYDRAULIC AND ELECTRICAL SYSTEMS - INSIST
	COPY No. 1/3 page 1/6	LICENSE No. LI - 205
		MTCT Certification
		No. 9 of February 3 rd , 2005

ADDITIONAL REPORT No. 00260 2 2011 FOR TESTS AND MEASUREMENTS ON B.I. 0188/2009

Boiler: ECO HORNET 100 kW HEATING UNIT operating on pelletized wood fuel, manufactured by S.C. HORNET GRUP S.R.L.

Testing

The tests were performed on the fully-equipped boiler.

The direct measurement of the fuel supply rate was made by weighing the wood fuel (pellets) for each testing mode.

Subject to these conditions, according to the provisions of SR EN 303-5, the boiler load is determined on the fuel side and on the hot water preparation side and the efficiency is determined by the direct method and the measurement errors are verified by calculating the indirect efficiency resulting from the measurement of all heat loss components.

Tests – synthetic results

The following testing conditions were applied, in accordance with the testing procedure for solid-fuel boilers of powers up to 300 kW, SREN 303-5: Test at Qn+/-8%

- stabilized thermal regime
- te=70-80°c
- 8t = 15-25 K
- measurement of CO2, CO, COY, NOx levels average values over the entire period
- measurement of dust level, 2 times aspiration on filtering 30 minutes
- temperature on surfaces: min. 5 points on each surface

separately on doors and handles

- The boiler was inspected.
- During the operation at nominal levels, the water temperature at the boiler output was maintained at 80 ± 10 °C by assuring a proper flow rate and a dissipated heat load able to maintain the desired temperature range;
- During operation in the minimal mode, the thermostat was adjusted to 90°C and a proper water supply rate was provided so that to obtain for the estimated load a temperature difference of approx. 20 °C between the feed water and the return water;
- The boiler input temperature was automatically adjusted by the testing bench so that to maintain a temperature difference of 15-25 K inside the boiler.

TECHNICAL UNIVERSITY OF CONSTRUCTION ENGINEERING	Additional Testing Report	TESTING LABORATORY FOR THERMAL, HYDRAULIC AND ELECTRICAL SYSTEMS -		
"	No. 00260/2011 COPY	INSIST LICENSE No. LI - 205		
	No. 1/3 page 2/6	MTCT Certification		
		No. 9 of February 3 rd , 2005		

TESTING MODE

- nominal power declared by manufacturer Pn = 111.7 kW
- nominal output declared by manufacturer Qn = 105 kW

The synthetic general results obtained in the testing modes applied to the ECO HORNET 100 kW boiler are presented in Table 1

Table 1: General synthetic results

BOILER	ECO HORNET
	100 kW
MODE	NOMINAL
Declared thermal output [kW]	105
Declared efficiency [%]	94
Water throughput: gwater [kg/h]	5021
Water temperature at boiler intake: t _{wateri} [°C]	62.03
Water temperature at boiler discharge: t _{waterd} [°C]	80.00
Measured thermal output [kW]	104.93
Temperature of exhaust gases in the flue: t _{flue} [°C]	119.8
Hourly fuel consumption: B _{comb} [kg/h]	23.70
Fuel's calorific power: Hi [MJ/kq]	17
Direct/indirect efficiency: EFF [%]	93.58/94.06
Validation of declared output and efficiency	YES

The synthetic results of the measurements made in the flue are presented in Table 2.

Table 2: Synthetic results of flue measurements

No.	CO (ppm)	CO2 (%)	NOx (ppm)	O2 (%)	Tflue
1	153	17.57	107	4.10	119.3
2	116	18.19	105	4.10	118.8
3	163	17.82	105	4.00	118.8
4	352	18.05	104	4.10	119.1
5	160	18.50	107	4.00	118.6
6	237	16.84	104	3.50	119.2
7	122	17.35	111	3.10	119.1
8	112	17.98	113	4.50	118.8
9	240	17.66	113	4.30	119.0
10	124	18.08	111	4.10	118.6
11	240	17.91	105	4 40	118.8
12	186	17.70	104	4.70	1194
13	143	18.72	104	4.40	118.5
14	150	17.81	100	4.90	119.0
15	180	18.42	97	4.60	119.1
16	157	18.07	95	4.20	118.8
17	179	17 44	94	4 40	119.1

TECHNICAL UNIVERSITY OF CONSTRUCTION ENGINEERING	Additional Testing Report No. 00260/2111 COPY	TESTING LABORATORY FOR THERMAL, HYDRAULIC AND ELECTRICAL SYSTEMS - INSIST		
	No. 1/3 page 3/6	LICENSE No. LI - 205 MTCT Certification No. 9 of February 3 rd , 2005		

The charts below show the values of the main parameters monitored during the maximum (nominal) load testing mode.

ECO HORNET 100 kW HEATING UNIT Testing on nominal load operating mode time [mm]

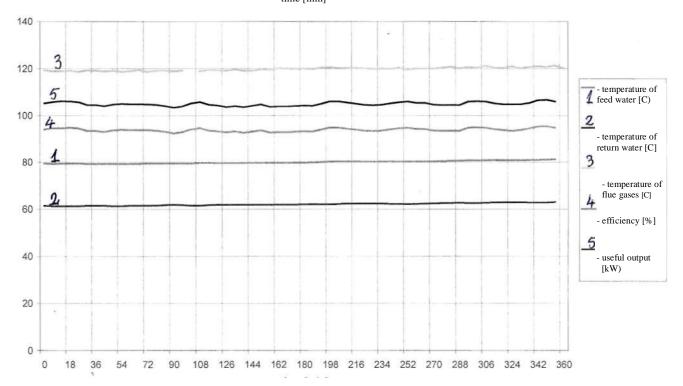


Table 3 presents the calculation of direct efficiency.

Table 4 presents the calculation of indirect efficiency.

TECHNICAL UNIVERSITY OF CONSTRUCTION ENGINEERING	Additional Testing Report No. 00260/2011 COPY No. 1/3 page 4/6	TESTING LABORATORY FOR THERMAL, HYDRAULIC AND ELECTRICAL SYSTEMS - INSIST LICENSE No. LI - 205 MTCT Certification No. 9 of February 3 rd , 2005
--	--	--

Table 3: CALCULATION OF DIRECT EFFICIENCY

			1			
MEASURED BOILER	HORNE					
FUEL	PELLETS					
MODE	NOMINAL					
DATE	14.06.2	011				
TIME	10:10-1	6:55				
	SYMBOL	M/U	AVERAGE VALUE			
Water volume measured	Vwater	I	5021			
Time	time	sec.	3600			
Average water temperature at boiler loop intake per cycle	twater-i	С	62.03			
Average water temperature at boiler discharge per cycle	twater-d	С	80.00			
CALCULATION OF	HEAT QUAN	ΓΙΤΙΕS				
Useful heat quant	<u>, , , , , , , , , , , , , , , , , , , </u>					
Intake water density	ROwater	kg/me	997			
Hourly water throughput	Gwater	kg/h	5006			
Cycle time	Tcycle	mm	365			
Water quantity per cycle	Gtot	kg	30453			
Water temperature difference	del _t	K	17.97			
Specific heat of water	Cp _{water}	kJ/kg/K	4.186			
Useful heat generated by water per cycle	Qut	kJ	2290732			
Useful heat generated by water per cycle	Qut kcal	kcal	547237			
Quantity of heat g	generated by fu	el per cycle				
Humidity	W	%	5			
Calorific power Hiuse=18000 kJ/kg						
Hi=Hiusc*(100-W)/10O-24.4*W	Hi	kJ/kg	16978			
Hi kcal/kg	Hikcal	kcal/kg	4056			
Fuel quantity per cycle	Ball	kg	144.175			
Heat generated by fuel per cycle	Qfuel	kJ	2447803			
Heat generated by fuel per cycle	Qfuelkcal	kcal	584759			
BOILER EFFICIENCY – DIRECT BALANCE						
EFFICIENCY (100*Qut/Qdat)	EFFdrr	%	93.58			
Hourly fuel consumption	Bh	kg/h	23.70			
Useful heat output	Qut	kW	104.62			

TECHNICAL UNIVERSITY OF CONSTRUCTION
ENGINEERING

Additional Testing Report
No. 00260/2011
COPY
No. 1/3 page 5/6

TESTING LABORATORY FOR THERMAL,
HYDRAULIC AND ELECTRICAL SYSTEMS INSIST
LICENSE No. LI - 205
MTCT Certification
No. 9 of February 3rd, 2005

Table 4: CALCULATION OF INDIRECT EFFICIENCY

MEASURED BOILER	HORNE	Γ100		
FUEL	PELI	ETS		
MODE	NOMI	NAL		
DATE	14.06.20			
TIME	10:10-16:15			
TIME	SYMBOL	M/U	AVEDACE	ATTIE
W 1	-	1 1	AVERAGE V	ALUE
Water volume measured Time	Vwater	I	5021	
Average water temperature at boiler loop intake per cycle	time twater-i	sec C	3600 62.03	
Average water temperature at boiler discharge per cycle	twater-d	C	80.00	
Flue temperature	Tflue	C	119.8	
Ambient air temperature	Tair	C	20	
Flue gas analysis	02	%	4.20	
Flue gas analysis	CO2	%	18.06	
Flue gas analysis	CO	1	241	
Flue gas analysis	NOx	ppm ppm	104.6	
Excess air	Excess air	PP	1.251	
Intake water density	ROwater	kg/mc	997	
Hourly water throughput	Gwater	kg/mc kg/h	5006	
Specific heat of water	cpa	kJ/kg/K	4.186	
Useful heat	Out	kW	104.60	
Useful heat	Out	kcal/h	90017	
BOILER EFFICIEN	CY CALCU	LATION	2002.	
Humidity	W	%	5	
Calorific power Hiusc = 88000 kJ/kg		,,,		
Hi=Hiusc*(100-W)/100-24.4*W	Hi	kJ/kg	16978	
Hi kcal/kg	Hikcal	kcal/kg	4055,9	
Minimum specific combustion air volume	Va	Nmc/kg	4,111	
Minimum specific flue gas volume	Vga	Nmc/kg	4,877	
Excess air	Excess air		1,251	
Specific gas volume				
Vg=Vgo+(A-1)*Va	Vg	Nmc/kg	5,91	
Specific H ₂ O volume in gases	VH20	Nmc/kg	0,795	
Specific volume of dry gases	Vgdry	Nmc/kg	5,114	
Specific loss due to gas enthalpy at the flue	•			
Flue gas temperature	tcas	С	119,8	
Ambient temperature	to	С	20	
Specific gas temperature	cpg	kJ/NmcKK	1,364	
qflue=1/Hi*Vg*cpg*(tflue-to)*100	qflue	%	4,736	
Specific loss by incomplete mechanical burning	1	•		
Ash concentration in fuel	A	%	1,8	
Carbon concentration in fuel	Ca	%	4,5	
q inc.m=1/Hi*32657*(A/100)*(Cal100ri00	qinc.m		,	
* ' ' '	qiiic.iii	%	0,156	
Specific loss by incomplete chemical burning	T			
CO concentration in gases	СО	%	0,0241	
qincc=1/Hi*126 .36*CO*Vgdry*100	qinc.c	%	0,092	
Specific loss through outer surfaces				
qext=Qext/Q*100	qext	%	0,956	
BOILER EFFICIENCY	-			
EFFind=100-qcos-qinc.m-qinc.c-qext	EFFind	%		1,06

<u>11</u>	THE HADEL THOSE ROLL TO THE HADEL THE HADEL TO THE HADEL THE HADEL THE HADEL THE HADEL THE HADEL THE HADEL TO THE HADEL THE HADE							
TECHNICAL UNIVERSITY OF	Additional Testing Report	TESTING LABORATORY FOR THERMAL,						
CONSTRUCTION ENGINEERING	0 1	HYDRAULIC AND ELECTRICAL SYSTEMS -						
	No. 00260/2011	INSIST						
	COPY	LICENSE No. LI-205						
	No. 1/3 page 6/6	MTCT Certification						
		No. 9 of February 3 rd , 2005						

EMISSIONS OF SOLID PARTICLES:

Testing method: according to the European standard SR EN 13284-112008.

EcoHORNET 105 kW heating unit flue

Physical parameters of source:

- ~ flue diameter: 0.12 m;
- ~ average temperature at measuring points: 104°C; 108°C;
- ~ average speed: 1.3 m/s; 3 m/s;
- ~ gas discharge rate: $21 \text{ Nm}^3/\text{h}$; $49 \text{ Nm}^3/\text{h}$;
- ~ isokinetic sampling (the sampling plane, with two sampling points, is located along the straight length of tube).

Sampling equipment parameters:

- Screen sampling system outside the flue
 - 1, Sampling nozzle: inside diameter = 6 mm;
 - 2, Aspiration tube (device mounted outside the flue);
 - 3, Filtering device: filter diameter = 47 mm;
 - 4, Aspiration unit and flue gas measurement devices;
 - 5, Anemometer for speed measurement.
- · Conditioning and weighing equipment
 - 1. Desiccator
 - 2. Electronic scales
 - 3. Thermometer close to the scales
 - 4. Notebook for monitoring temperature in the scales room.

TEST RESULTS

Sequential dust emissions

	1									
Emission	Sampling	Sampling	No. of	Sampling	Sample	Sampling	Temperature	Total dust	Total dust	Measurement
source	date	time	tests	period,	volume	flow rate,	°C	weight on	concentration,	error,
				minutes	L	L/min		filter, mg	mg/Nm ³	mg/m ³
Dust	16.06.2011	15.10-15.40	1	30	90	3,0	104 108	0,	4,6	2
discharge		16.25-16.40	1	15	75	5,0		3	7,4	
flue								0		
								^		
Measurement methods				1	SREN 1	3284-1: 20	08			

Sampling date: 16.06.2011

Prepared by: Verificat,

Nicolae ANTONESCU Paul Dan STANESCU

Illegible signature

The foregoing English translation is herewith certified to be a true and complete translation of the Romania text which has been submitted to me in the form of a photocopy.

Nasen Brigitte MÜLLER,

duly authorized by the Ministry of Justice of Romania [Romanian: Ministerul Justiţiei] under the registration number 23906/2009, to certify the accuracy and completeness of translations into the English language.